Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
J Vasc Interv Radiol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599279

RESUMO

PURPOSE: To summarize dose trends from 1980-2020 for 19,651 U.S. radiologic technologists who reported assisting with fluoroscopically-guided interventional procedures (FGIP), overall and by work history characteristics. METHODS: We summarized 762,310 annual personal dose equivalents at a 10 mm-reference depth ("doses") during 1980-2020 for 43,823 participants of the U.S. Radiologic Technologists (USRT) cohort who responded to work history questionnaires administered during 2012-2014. This population included 19,651 technologists who reported assisting with FGIP (≥1 time per month for ≥12 consecutive months) at any time during the study period. We estimated doses corresponding to assistance with FGIP by proximity to patients, monthly procedure frequency, and procedure type. We used box plots and summary statistics (e.g., median, percentiles) to describe annual doses and dose trends. RESULTS: Median annual dose corresponding to assistance with FGIP was 0.65 mSv, [interquartile range (IQR)=0.60-1.40; 95th percentile=6.80]. Higher occupational doses with wider variability were associated with close proximity to patients during assistance with FGIP (median=1.20 mSv; IQR=0.60-4.18; 95th percentile=12.66), performing ≥20 FGIP per month (median=0.75 mSv; IQR=0.60, 2.40; 95th percentile=9.44), and assisting with high-dose FGIP (median=0.70; IQR=0.60, 1.90; 95th percentile=8.30). CONCLUSION: Occupational doses corresponding to assistance with FGIP were generally low but varied with exposure frequency, procedure type, and proximity to patients. These results highlight the need for vigilant dose monitoring, radiation safety training, and proper protective equipment.

2.
Eur Radiol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358528

RESUMO

OBJECTIVES: The carcinogenic risks of CT radiation in children and adolescents remain debated. We aimed to assess the carcinogenic risk of CTs performed in children and adolescents with minor head trauma. METHODS: In this nationwide population-based cohort study, we included 2,411,715 patients of age 0-19 with minor head trauma from 2009 to 2017. We excluded patients with elevated cancer risks or substantial past medical radiation exposure. Patients were categorized into CT-exposed or CT-unexposed group according to claim codes for head CT. The primary outcome was development of hematologic malignant neoplasms. Secondary outcomes included development of malignant solid neoplasms and benign neoplasms in the brain. We measured the incidence rate ratio (IRR) and incidence rate difference (IRD) using G-computation with Poisson regression adjusting for age, sex, hospital setting, and the type of head trauma. RESULTS: Hematologic malignant neoplasms developed in 100 of 216,826 patients during 1,303,680 person-years in the CT-exposed group and in 808 of 2,194,889 patients during 13,501,227 person-years in the CT-unexposed group. For hematologic malignant neoplasms, the IRR was 1.29 (95% CI, 1.03-1.60) and the IRD was 1.71 (95% CI, 0.04-3.37) per 100,000 person-years at risk. The majority of excess hematologic malignant neoplasms were leukemia (IRR, 1.40 [98.3% CI, 1.05-1.87]; IRD, 1.59 [98.3% CI, 0.02-3.16] per 100,000 person-years at risk). There were no between-group differences for secondary outcomes. CONCLUSIONS: Radiation exposure from head CTs in children and adolescents with minor head trauma was associated with an increased incidence of hematologic malignant neoplasms. CLINICAL RELEVANCE STATEMENT: Our study provides a quantitative grasp of the risk conferred by CT examinations in children and adolescents, thereby providing the basis for cost-benefit analyses and evidence-driven guidelines for patient triaging in head trauma. KEY POINTS: • This nationwide population-based cohort study showed that radiation exposure from head CTs in children and adolescents was associated with a higher incidence of hematologic malignant neoplasms. • The incidence rate of hematologic malignant neoplasms in the CT-exposed group was 29% higher than that in the CT-unexposed group (IRR, 1.29 [95% CI, 1.03-1.60]), and there were approximately 1.7 excess neoplasms per 100,000 person-years at risk in the CT-exposed group (IRD, 1.71 [0.04-3.37]). • Our study provides a quantified grasp of the risk conferred by CT examinations in children and adolescents, while controlling for biases observed in previous studies via specifying CT indication and excluding patients with predisposing conditions for cancer development.

3.
J Radiol Prot ; 44(1)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38232407

RESUMO

The escalating incidence of differentiated thyroid cancer (DTC) in pediatric patients and the resultant growing use of radioactive iodine (RAI) reinforce the need to evaluate radiation exposure to normal tissues and radiation-induced health risks in pediatric patients undergoing RAI therapy. In the current study, we calculated absorbed dose coefficients (i.e. absorbed dose per unit activity administered, mGy MBq-1) specific for pediatric patients with localized DTC undergoing RAI therapy following total thyroidectomy for use in epidemiological studies. We first modified previously-published biokinetic models for adult thyroid cancer patients to achieve a reasonable agreement with iodine biokinetics observed in pediatric patients or design principles addressed in the International Commission on Radiological Protection (ICRP) reference age-specific biokinetic models. We then combined the biokinetic models in conjunction withSvalues derived from ICRP reference pediatric voxel phantoms. The absorbed dose coefficients for pediatric patients were overall greater than those for adults with a ratio (pediatric/adult) up to 11.6 and rapidly decreased with increasing age. The sensitivity analysis showed that the renal clearance rate andSvalues may have the greatest impact on the absorbed dose coefficients with the rank correlation coefficients ranging from -0.53 to -0.82 (negative correlations) and from 0.51 to 0.80 (positive correlations), respectively. The results of the current study may be utilized in clinical or epidemiological studies to estimate organ-specific radiation absorbed doses and radiation-associated health risks among pediatric thyroid cancer patients.


Assuntos
Neoplasias da Glândula Tireoide , Adulto , Humanos , Criança , Radioisótopos do Iodo/uso terapêutico , Doses de Radiação , Tireoidectomia , Radiometria/métodos
4.
Radiat Prot Dosimetry ; 200(4): 379-386, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38186237

RESUMO

We derived the first comprehensive organ dose library for Canadian pediatric and adult patients who underwent computed tomography (CT) scans between 1992 and 2019 to support epidemiological analysis of radiation risk. We calculated organ absorbed doses for Canadian CT patients in two steps. First, we modeled Computed Tomography Dose Index (CTDI) values by patient age, scan body part, and scan year for the scan period between 1992 and 2019 using national survey data conducted in Canada and partially the United Kingdom survey data as surrogates. Second, we converted CTDI values to organ absorbed doses using a library of organ dose conversion coefficients built in an organ dose calculation program, the National Cancer Institute dosimetry system for CT. In result, we created a library of doses delivered to 33 organs and tissues by different patient ages and genders, scan body parts and scan years. In the scan period before 2000, the organs receiving the greatest dose in the head, chest and abdomen-pelvis scans were the active marrow (3.7-15.2 mGy), lungs (54.7-62.8 mGy) and colon (54.9-68.5 mGy), respectively. We observed organ doses reduced by 24% (pediatric head and torso scans, and adult head scans) and 55% (adult torso scans) after 2000. The organ dose library will be used to analyse the risk of radiation exposure from CT scans in the Canadian CT patient cohort.


Assuntos
Radiometria , Tomografia Computadorizada por Raios X , Adulto , Humanos , Criança , Masculino , Feminino , Doses de Radiação , Método de Monte Carlo , Canadá , Tomografia Computadorizada por Raios X/métodos , Radiometria/métodos , Imagens de Fantasmas
5.
Radiat Res ; 201(1): 1-6, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38014578

RESUMO

Ionizing radiation is one of the known risk factors for cataract development, however, there is still debate regarding the level of risk after low dose exposures. One of the largest sources of radiation exposure to the lens of the eye is diagnostic CT scans. The aim of this study was to examine whether ionizing radiation associated with head CT scans increases cataract risk in residents of Ontario, Canada. Data were collected from January 1, 1994 to December 31, 2015 (22 years) from anonymized Ontario Health Insurance Plan (OHIP) medical records for over 16 million subjects. A lens dose was estimated for each CT scan using the National Cancer Institute dosimetry system for CT (NCICT) program combined with Canada-specific CTDIvol data. Multivariate Cox proportional hazards analysis was performed with cataract extraction surgery as the primary outcome and lens dose as the main variable of interest, with inclusion of various medical and demographic covariates. Lag periods of 3, 5 and 7 years were incorporated. When lens dose was treated as a continuous variable, hazard ratios (per 100 mGy) ranged from 0.82 (0.80-0.84) to 1.10 (1.09-1.11) depending on the lag period. As a secondary analysis, when individuals were binned based on their total cumulative dose, no significant dose response pattern was observed in the low dose region. Overall, within the bounds of this study, the data do not support an increased risk of vision impairing cataracts after diagnostic head CT scan radiation exposure.


Assuntos
Catarata , Exposição à Radiação , Humanos , Ontário/epidemiologia , Doses de Radiação , Catarata/epidemiologia , Catarata/etiologia , Tomografia Computadorizada por Raios X/efeitos adversos , Exposição à Radiação/efeitos adversos , Medição de Risco
6.
Adv Radiat Oncol ; 8(6): 101273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047226

RESUMO

Purpose: The physical properties of protons lower doses to surrounding normal tissues compared with photons, potentially reducing acute and long-term adverse effects, including subsequent cancers. The magnitude of benefit is uncertain, however, and currently based largely on modeling studies. Despite the paucity of directly comparative data, the number of proton centers and patients are expanding exponentially. Direct studies of the potential risks and benefits are needed in children, who have the highest risk of radiation-related subsequent cancers. The Pediatric Proton and Photon Therapy Comparison Cohort aims to meet this need. Methods and Materials: We are developing a record-linkage cohort of 10,000 proton and 10,000 photon therapy patients treated from 2007 to 2022 in the United States and Canada for pediatric central nervous system tumors, sarcomas, Hodgkin lymphoma, or neuroblastoma, the pediatric tumors most frequently treated with protons. Exposure assessment will be based on state-of-the-art dosimetry facilitated by collection of electronic radiation records for all eligible patients. Subsequent cancers and mortality will be ascertained by linkage to state and provincial cancer registries in the United States and Canada, respectively. The primary analysis will examine subsequent cancer risk after proton therapy compared with photon therapy, adjusting for potential confounders and accounting for competing risks. Results: For the primary aim comparing overall subsequent cancer rates between proton and photon therapy, we estimated that with 10,000 patients in each treatment group there would be 80% power to detect a relative risk of 0.8 assuming a cumulative incidence of subsequent cancers of 2.5% by 15 years after diagnosis. To date, 9 institutions have joined the cohort and initiated data collection; additional centers will be added in the coming year(s). Conclusions: Our findings will affect clinical practice for pediatric patients with cancer by providing the first large-scale systematic comparison of the risk of subsequent cancers from proton compared with photon therapy.

7.
Phys Imaging Radiat Oncol ; 28: 100520, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38077272

RESUMO

Background and purpose: Contouring of organs at risk is important for studying health effects following breast radiotherapy. However, manual contouring is time-consuming and subject to variability. The purpose of this study was to develop a deep learning-based method to automatically segment multiple structures on breast radiotherapy planning computed tomography (CT) images. Materials and methods: We used data from 118 patients, including 90 diagnostic CT scans with expert structure delineations for training and 28 breast radiotherapy planning CT images for testing. The radiotherapy CT images also had expert delineations for evaluating performance. We targeted a total of eleven organs at risk including five heart substructures. Segmentation performance was evaluated using the metrics of Dice similarity coefficient (DSC), overlap fraction, volume similarity, Hausdorff distance, mean surface distance, and dose. Results: The average DSC achieved on the radiotherapy planning images was 0.94 ± 0.02 for the whole heart, 0.96 ± 0.02 and 0.97 ± 0.01 for the left and right lung, 0.61 ± 0.10 for the esophagus, 0.81 ± 0.04 and 0.86 ± 0.04 for left and right atrium, 0.91 ± 0.02 and 0.84 ± 0.04 for left and right ventricle, and 0.21 ± 0.11 for the left anterior descending artery (LAD), respectively. Except for the LAD, the median difference in mean dose to these structures was small with absolute (relative) differences < 0.1 Gy (6 %). Conclusions: Except for the LAD, our method demonstrated excellent performance and can be generalized to segment additional structures of interest.

8.
Med Phys ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38071746

RESUMO

BACKGROUND: Daily IGRT images show day-to-day anatomical variations in patients undergoing fractionated prostate radiotherapy. This is of particular importance in particle beam treatments. PURPOSE: To develop a digital phantom series showing variation in pelvic anatomy for evaluating treatment planning and IGRT procedures in particle radiotherapy. METHODS: A pelvic phantom series was developed from the planning MRI and kVCT (planning CT) images along with six of the daily serial MVCT images taken of a single patient treated with a full bladder on a Tomotherapy unit. The selected patient had clearly visible yet unexceptional internal anatomy variation. Prostate, urethra, bladder, rectum, bowel, bowel gas, bone and soft tissue were contoured and a single Hounsfield Unit was assigned to each region. Treatment plans developed on the kVCT for photon, proton and carbon beams were recalculated on each phantom to demonstrate a clinical application of the series. Proton plans were developed with and without robust optimization. RESULTS: Limited to axial slices with prostate, the bladder volume varied from 6 to 46 cm3 , the rectal volume (excluding gas) from 22 to 52 cm3 , and rectal gas volume from zero to 18 cm3 . The water equivalent path length to the prostate varied by up to 1.5 cm . The variations resulted in larger changes in the RBE-weighted Dose Volume Histograms of the non-robust proton plan and the carbon plan compared to the robust proton plan, the latter similar to the photon plan. The prostate coverage (V100%) decreased by an average of 18% in the carbon plan, 16% in the non-robust proton plan, 1.8% in the robust proton plan, and 4.4% in the photon plan. The volume of rectum receiving 75% of the prescription dose (V75%) increased by an average of 3.7 cm3 , 4.7 cm3 , 1.9 cm3 , and 0.6 cm3 in those four plans, respectively. CONCLUSIONS: The digital pelvic phantom series provides for quantitative investigation of IGRT procedures and new methods for improving accuracy in particle therapy and may be used in cross-institutional comparisons for clinical trial quality assurance.

9.
Nucl Eng Technol ; 55(12): 4659-4663, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38124777

RESUMO

The use of iodine S values derived using the International Commission Radiological Protection (ICRP) phantoms may introduce significant bias in internal dosimetry for Koreans due to anatomical variability. In the current study, we produced an extensive dataset of Korean S values for selected five iodine radioisotopes (I-125, I-129, I-131, I-133, and I-134) for use in radiation protection. To calculate S values, we implemented Monte Carlo simulations using the Mesh-type Reference Korean Phantoms (MRKPs), developed in a high-quality/fidelity mesh format. Noticeable differences were observed in S value comparisons between the Korean and ICRP reference phantoms with ratios (Korean/ICRP) widely ranging from 0.16 to 6.2. The majority of S value ratios were lower than the unity in Korean phantoms (interquartile range =0.47-1.28; mean = 0.96; median = 0.69). The S values provided in the current study will be extensively utilized in iodine internal dosimetry for Koreans.

10.
Nat Med ; 29(12): 3111-3119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37946058

RESUMO

Over one million European children undergo computed tomography (CT) scans annually. Although moderate- to high-dose ionizing radiation exposure is an established risk factor for hematological malignancies, risks at CT examination dose levels remain uncertain. Here we followed up a multinational cohort (EPI-CT) of 948,174 individuals who underwent CT examinations before age 22 years in nine European countries. Radiation doses to the active bone marrow were estimated on the basis of body part scanned, patient characteristics, time period and inferred CT technical parameters. We found an association between cumulative dose and risk of all hematological malignancies, with an excess relative risk of 1.96 (95% confidence interval 1.10 to 3.12) per 100 mGy (790 cases). Similar estimates were obtained for lymphoid and myeloid malignancies. Results suggest that for every 10,000 children examined today (mean dose 8 mGy), 1-2 persons are expected to develop a hematological malignancy attributable to radiation exposure in the subsequent 12 years. Our results strengthen the body of evidence of increased cancer risk at low radiation doses and highlight the need for continued justification of pediatric CT examinations and optimization of doses.


Assuntos
Neoplasias Hematológicas , Neoplasias Induzidas por Radiação , Exposição à Radiação , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Doses de Radiação , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Hematológicas/epidemiologia , Neoplasias Hematológicas/etiologia , Exposição à Radiação/efeitos adversos , Tomografia Computadorizada por Raios X/efeitos adversos
11.
Health Phys ; 125(6): 434-445, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823824

RESUMO

ABSTRACT: As part of the activities of the International Commission on Radiological Protection (ICRP) Task Group 103, the present study developed a new set of respiratory tract organs consisting of the extrathoracic, bronchial, bronchiolar, and alveolar-interstitial regions for newborn, 1-, 5-, 10-, and 15-y-old males and females for use in pediatric mesh-type reference computational phantoms. The developed respiratory tract organs, while preserving the original topologies of those of the pediatric voxel-type reference computational phantoms of ICRP Publication 143, have improved anatomy and detailed structure and also include µm-thick target and source regions prescribed in ICRP Publication 66. The dosimetric impact of the developed respiratory tract organs was investigated by calculating the specific absorbed fraction for internal electron exposures, which were then compared with the ICRP Task Group 96 values. The results showed that except for the alveolar-interstitial region as a source region, the pediatric mesh phantoms showed larger specific absorbed fractions than the Task Group 96 values. The maximum difference was a factor of ~3.5 for the extrathoracic-2 basal cell and surface as target and source regions, respectively. These results reflect the differences in the target masses and geometry caused by the anatomical enhancement of the pediatric mesh phantoms. For the alveolar-interstitial region as a source region, the pediatric mesh phantoms showed larger values for low energy ranges and lower values with increasing energies, owing to the differences in the size and shape of the alveolar-interstitial region.


Assuntos
Radiometria , Sistema Respiratório , Humanos , Masculino , Feminino , Criança , Recém-Nascido , Doses de Radiação , Radiometria/métodos , Elétrons , Imagens de Fantasmas , Método de Monte Carlo
12.
Eur Radiol ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37798408

RESUMO

OBJECTIVES: The most accurate method for estimating patient effective dose (a principal metric for tracking patient radiation exposure) from computed tomography (CT) requires time-intensive Monte Carlo simulation. A simpler method multiplies a scalar coefficient by the widely available scanner-reported dose length product (DLP) to estimate effective dose. We developed new adult effective dose coefficients using actual patient scans and assessed their agreement with Monte Carlo simulation. METHODS: A multicenter sample of 216,906 adult CT scans was prospectively assembled in 2015-2020 from the University of California San Francisco International CT Dose Registry and the University of Florida library of computational phantoms. We generated effective dose coefficients for eight body regions, stratified by patient sex, diameter, and scanner manufacturer. We applied the new coefficients to DLPs to calculate effective doses and assess their correlations with Monte Carlo radiation transport-generated effective dose. RESULTS: Effective dose coefficients varied by body region and decreased in magnitude with increasing patient diameter. Coefficients were approximately twofold higher for torso scans in smallest compared with largest diameter categories. For example, abdomen and pelvis coefficients decreased from 0.027 to 0.013 mSv/mGy-cm between the 16-20 cm and 41+ cm categories. There were modest but consistent differences by sex and manufacturer. Diameter-based coefficients used to estimate effective dose produced strong correlations with the reference standard (Pearson correlations 0.77-0.86). The reported conversion coefficients differ from previous studies, particularly in neck CT. CONCLUSIONS: New effective dose coefficients derived from empirical clinical scans can be used to easily estimate effective dose using scanner-reported DLP. CLINICAL RELEVANCE STATEMENT: Scalar coefficients multiplied by DLP offer a simple approximation to effective dose, a key radiation dose metric. New effective dose coefficients from this study strongly correlate with gold standard, Monte Carlo-generated effective dose, and differ somewhat from previous studies. KEY POINTS: • Previous effective dose coefficients were derived from theoretical models rather than real patient data. • The new coefficients (from a large registry/phantom library) differ from previous studies. • The new coefficients offer reasonably reliable values for estimating effective dose.

14.
Br J Cancer ; 129(7): 1152-1165, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37596407

RESUMO

BACKGROUND: Many high-dose groups demonstrate increased leukaemia risks, with risk greatest following childhood exposure; risks at low/moderate doses are less clear. METHODS: We conducted a pooled analysis of the major radiation-associated leukaemias (acute myeloid leukaemia (AML) with/without the inclusion of myelodysplastic syndrome (MDS), chronic myeloid leukaemia (CML), acute lymphoblastic leukaemia (ALL)) in ten childhood-exposed groups, including Japanese atomic bomb survivors, four therapeutically irradiated and five diagnostically exposed cohorts, a mixture of incidence and mortality data. Relative/absolute risk Poisson regression models were fitted. RESULTS: Of 365 cases/deaths of leukaemias excluding chronic lymphocytic leukaemia, there were 272 AML/CML/ALL among 310,905 persons (7,641,362 person-years), with mean active bone marrow (ABM) dose of 0.11 Gy (range 0-5.95). We estimated significant (P < 0.005) linear excess relative risks/Gy (ERR/Gy) for: AML (n = 140) = 1.48 (95% CI 0.59-2.85), CML (n = 61) = 1.77 (95% CI 0.38-4.50), and ALL (n = 71) = 6.65 (95% CI 2.79-14.83). There is upward curvature in the dose response for ALL and AML over the full dose range, although at lower doses (<0.5 Gy) curvature for ALL is downwards. DISCUSSION: We found increased ERR/Gy for all major types of radiation-associated leukaemia after childhood exposure to ABM doses that were predominantly (for 99%) <1 Gy, and consistent with our prior analysis focusing on <100 mGy.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia , Neoplasias Induzidas por Radiação , Exposição à Radiação , Humanos , Fatores de Risco , Leucemia/epidemiologia , Exposição à Radiação/efeitos adversos , Incidência , Radiação Ionizante , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Doses de Radiação
15.
Health Phys ; 125(4): 245-259, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37358430

RESUMO

ABSTRACT: Organ dosimetry data of the atomic bomb survivors and the resulting cancer risk models derived from these data are currently assessed within the DS02 dosimetry system developed through the Joint US-Japan Dosimetry Working Group. In DS02, the anatomical survivor models are limited to three hermaphroditic stylized phantoms-an adult (55 kg), a child (19.8 kg), and an infant (9.7 kg)-that were originally designed for the preceding DS86 dosimetry system. As such, organ doses needed for assessment of in-utero cancer risks to the fetus have continued to rely upon the use of the uterine wall in the adult non-pregnant stylized phantom as the dose surrogate for all fetal organs regardless of gestational age. To address these limitations, the Radiation Effects Research Foundation (RERF) Working Group on Organ Dose (WGOD) has established the J45 (Japan 1945) series of high-resolution voxel phantoms, which were derived from the UF/NCI series of hybrid phantoms and scaled to match mid-1940s Japanese body morphometries. The series includes male and female phantoms-newborn to adult-and four pregnant female phantoms at gestational ages of 8, 15, 25, and 38 wk post-conception. In previous studies, we have reported organ dose differences between those reported by the DS02 system and those computed by the WGOD using 3D Monte Carlo radiation transport simulations of atomic bomb gamma-ray and neutron fields for the J45 phantoms series in their traditional "standing" posture, with some variations in their facing direction relative to the bomb hypocenter. In this present study, we present the J45 pregnant female phantoms in both a "kneeling" and "lying" posture and assess the dosimetric impact of these more anatomically realistic survivor models in comparison to current organ doses given by the DS02 system. For the kneeling phantoms facing the bomb hypocenter, organ doses from bomb source photon spectra were shown to be overestimated by the DS02 system by up to a factor of 1.45 for certain fetal organs and up to a factor of 1.17 for maternal organs. For lying phantoms with their feet in the direction of the hypocenter, fetal organ doses from bomb source photon spectra were underestimated by the DS02 system by factors as low as 0.77, while maternal organ doses were overestimated by up to a factor of 1.38. Organs doses from neutron contributions to the radiation fields exhibited an increasing overestimation by the DS02 stylized phantoms as gestational age increased. These discrepancies are most evident in fetal organs that are more posterior within the mother's womb, such as the fetal brain. Further analysis revealed that comparison of these postures to the original standing posture indicate significant dose differences for both maternal and fetal organ doses depending on the type of irradiation. Results from this study highlight the degree to which the existing DS02 system can differ from organ dosimetry based upon 3D radiation transport simulations using more anatomically realistic models of those survivors exposed during pregnancy.


Assuntos
Sobreviventes de Bombas Atômicas , Lesões por Radiação , Recém-Nascido , Criança , Adulto , Gravidez , Humanos , Masculino , Feminino , Radiometria/métodos , Feto/efeitos da radiação , Postura
16.
Radiat Environ Biophys ; 62(3): 317-329, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37296237

RESUMO

A significant source of information on radiation-induced biological effects following in-utero irradiation stems from studies of atomic bomb survivors who were pregnant at the time of exposure in Hiroshima, and to a lesser extent, from survivors in Nagasaki. Dose estimates to the developing fetus for these survivors have been assigned in prior dosimetry systems of the Radiation Effects Research Foundation as the dose to the uterine wall within the non-pregnant adult stylized phantom, originally designed for the dosimetry system DS86 and then carried forward in DS02. In a prior study, a new J45 (Japanese 1945) series of high-resolution phantoms of the adult pregnant female at 8 weeks, 15 weeks, 25 weeks, and 38-weeks post-conception was presented. Fetal and maternal organ doses were estimated by computationally exposing the pregnant female phantom series to DS02 free-in-air cumulative photon and neutron fluences at three distances from the hypocenter at both Hiroshima and Nagasaki under idealized frontal (AP) and isotropic (ISO) particle incidence. In this present study, this work was extended using realistic angular fluences (480 directions) from the DS02 system for seven radiation source terms, nine different radiation dose components, and five shielding conditions. In addition, to explore the effects of fetal position within the womb, four new phantoms were created and the same irradiation scenarios were performed. General findings are that the current DS02 fetal dose surrogate overestimates values of fetal organ dose seen in the J45 phantoms towards the cranial end of the fetus, especially in the later stages of pregnancy. For example, for in-open exposures at 1000 m in Hiroshima, the ratio of J45 fetal brain dose to DS02 uterine wall dose is 0.90, 0.82, and 0.70 at 15 weeks, 25 weeks, and 38-weeks, respectively, for total gamma exposures, and are 0.64, 0.44, and 0.37 at these same gestational ages for total neutron exposures. For organs in the abdominal and pelvic regions of the fetus, dose gradients across gestational age flatten and later reverse, so that DS02 fetal dosimetry begins to underestimate values of fetal organ dose as seen in the J45 phantoms. For example, for the same exposure scenario, the ratios of J45 fetal kidney dose to DS02 uterine wall dose are about 1.09 from 15 to 38 weeks for total gamma dose, and are 1.30, 1.56, and 1.75 at 15 weeks, 25 weeks, and 38 weeks, respectively, for the total neutron dose. Results using the new fetal positioning phantoms show this trend reversing for a head-up, breach fetal position. This work supports previous findings that the J45 pregnant female phantom series offers significant opportunities for gestational age-dependent assessment of fetal organ dose without the need to invoke the uterine wall as a fetal organ surrogate.


Assuntos
Guerra Nuclear , Lesões por Radiação , Adulto , Feminino , Humanos , Gravidez , Sobreviventes de Bombas Atômicas , Radiometria/métodos , Sobreviventes , Feto , Japão
17.
J Clin Oncol ; 41(22): 3826-3838, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307512

RESUMO

PURPOSE: Radiation-associated cardiac disease is a major cause of morbidity/mortality among childhood cancer survivors. Radiation dose-response relationships for cardiac substructures and cardiac diseases remain unestablished. METHODS: Using the 25,481 5-year survivors of childhood cancer treated from 1970 to 1999 in the Childhood Cancer Survivor Study, we evaluated coronary artery disease (CAD), heart failure (HF), valvular disease (VD), and arrhythmia. We reconstructed radiation doses for each survivor to the coronary arteries, chambers, valves, and whole heart. Excess relative rate (ERR) models and piecewise exponential models evaluated dose-response relationships. RESULTS: The cumulative incidence 35 years from diagnosis was 3.9% (95% CI, 3.4 to 4.3) for CAD, 3.8% (95% CI, 3.4 to 4.2) for HF, 1.2% (95% CI, 1.0 to 1.5) for VD, and 1.4% (95% CI, 1.1 to 1.6) for arrhythmia. A total of 12,288 survivors (48.2%) were exposed to radiotherapy. Quadratic ERR models improved fit compared with linear ERR models for the dose-response relationship between mean whole heart and CAD, HF, and arrhythmia, suggesting a potential threshold dose; however, such departure from linearity was not observed for most cardiac substructure end point dose-response relationships. Mean doses of 5-9.9 Gy to the whole heart did not increase the risk of any cardiac diseases. Mean doses of 5-9.9 Gy to the right coronary artery (rate ratio [RR], 2.6 [95% CI, 1.6 to 4.1]) and left ventricle (RR, 2.2 [95% CI, 1.3 to 3.7]) increased risk of CAD, and to the tricuspid valve (RR, 5.5 [95% CI, 2.0 to 15.1]) and right ventricle (RR, 8.4 [95% CI, 3.7 to 19.0]) increased risk of VD. CONCLUSION: Among children with cancer, there may be no threshold dose below which radiation to the cardiac substructures does not increase the risk of cardiac diseases. This emphasizes their importance in modern treatment planning.


Assuntos
Sobreviventes de Câncer , Cardiopatias , Insuficiência Cardíaca , Neoplasias , Lesões por Radiação , Criança , Humanos , Neoplasias/tratamento farmacológico , Sobreviventes , Cardiopatias/etiologia , Cardiopatias/complicações , Lesões por Radiação/epidemiologia , Lesões por Radiação/etiologia , Relação Dose-Resposta à Radiação
18.
Biomed Phys Eng Express ; 9(4)2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37146592

RESUMO

Background. It is critical to monitor the radiation dose delivered to patients undergoing radiography and fluoroscopy to prevent both acute and potential long-term adverse health effects. Accurate estimation of organ doses is essential to ensuring that radiation dose is maintained As Low As Reasonably Achievable. We developed a graphical user interface-based organ dose calculation tool for pediatric and adult patients undergoing radiography and fluoroscopy examinations.Methods. Our dose calculator follows the four sequential steps. First, the calculator obtains input parameters related to patient age and gender, and x-ray source data. Second, the program creates an input file describing the anatomy and material composition of a phantom, x-ray source, and organ dose scorers for Monte Carlo radiation transport using the user input parameters. Third, a built-in Geant4 module was developed to import the input file and to calculate organ absorbed doses and skeletal fluences through Monte Carlo radiation transport. Lastly, active marrow and endosteum doses are derived from the skeletal fluences and effective dose is calculated from the organ and tissue doses. Following benchmarking with MCNP6, we conducted some benchmarking calculations calculated organ doses for an illustrative cardeiac interventional fluoroscopy and compared the results with those from an existing dose calculator, PCXMC.Results. The graphical user interface-based program was entitled National Cancer Institute dosimetry system for Radiography and Fluoroscopy (NCIRF). Organ doses calculated from NCIRF showed an excellent agreement with those from MCNP6 in the simulation of an illustrative fluoroscopy exam. In the cardiac interventional fluoroscopy exam of the adult male and female phantoms, the lungs received relatively greater doses than any other organs. PCXMC based on stylistic phantoms overall overestimated major organ doses calculated from NCIRF by up to 3.7-fold (active bone marrow).Conclusion. We developed an organ dose calculation tool for pediatric and adult patients undergoing radiography and fluoroscopy examinations. NCIRF could substantially increase the accuracy and efficiency of organ dose estimation in radiography and fluoroscopy exams.


Assuntos
Radiometria , Adulto , Humanos , Masculino , Criança , Feminino , Doses de Radiação , Radiografia , Radiometria/métodos , Fluoroscopia , Simulação por Computador
19.
J Radiol Prot ; 43(2)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37196645

RESUMO

Use of radioactive iodine (RAI) for thyroid cancer patients is accompanied by elevated risks of radiation-induced adverse effects due to significant radiation exposure of normal tissues or organs other than the thyroid. The health risk estimation for thyroid cancer patients should thus be preceded by estimating normal tissue doses. Although organ dose estimation for a large cohort often relies on absorbed dose coefficients (i.e. absorbed dose per unit activity administered, mGy MBq-1) based on population models, no data are available for thyroid cancer patients. In the current study, we calculated absorbed dose coefficients specific for adult thyroid cancer patients undergoing RAI treatment after recombinant human TSH (rhTSH) administration or thyroid hormone withdrawal (THW). We first adjusted the transfer rates in the biokinetic model previously developed for THW patients for use in rhTSH patients. We then implemented the biokinetic models for thyroid cancer patients coupled withSvalues from the International Commission on Radiological Protection (ICRP) reference voxel phantoms to calculate absorbed dose coefficients. The biokinetic model for rhTSH patients predicted the extrathyroidal iodine decreasing noticeably faster than in the model for THW patients (calculated half-times of 12 and 15 h for rhTSH administration and THW, respectively). All dose coefficients for rhTSH patients were lower than those for THW patients with the ratio (rhTSH administration/THW) ranging from 0.60 to 0.95 (mean = 0.67). The ratio of the absorbed dose coefficients in the current study to the ICRP dose coefficients, which were derived from models for normal subjects, varied widely from 0.21 to 7.19, stressing the importance of using the dose coefficients for thyroid cancer patients. The results of this study will provide medical physicists and dosimetrists with scientific evidence to protect patients from excess exposure or to assess radiation-induced health risks caused by RAI treatment.


Assuntos
Iodo , Neoplasias da Glândula Tireoide , Tirotropina Alfa , Humanos , Adulto , Neoplasias da Glândula Tireoide/radioterapia , Radioisótopos do Iodo/uso terapêutico , Tirotropina Alfa/uso terapêutico , Tireotropina/uso terapêutico , Estudos Retrospectivos
20.
Eur J Epidemiol ; 38(7): 821-834, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191831

RESUMO

Pediatric patients with congenital heart disease (CHD) often undergo low dose ionizing radiation (LDIR) from cardiac catheterization (CC) for the diagnosis and/or treatment of their disease. Although radiation doses from a single CC are usually low, less is known about the long-term radiation associated cancer risks. We aimed to assess the risk of lympho-hematopoietic malignancies in pediatric CHD patients diagnosed or treated with CC. A French cohort of 17,104 children free of cancer who had undergone a first CC from 01/01/2000 to 31/12/2013, before the age of 16 was set up. The follow-up started at the date of the first recorded CC until the exit date, i.e., the date of death, the date of first cancer diagnosis, the date of the 18th birthday, or the 31/12/2015, whichever occurred first. Poisson regression was used to estimate the LDIR associated cancer risk. The median follow-up was 5.9 years, with 110,335 person-years. There were 22,227 CC procedures, yielding an individual active bone marrow (ABM) mean cumulative dose of 3.0 milligray (mGy). Thirty-eight incident lympho-hematopoietic malignancies were observed. When adjusting for attained age, gender and predisposing factors to cancer status, no increased risk was observed for lympho-hematopoietic malignancies RR/mGy = 1.00 (95% CI: 0.88; 1.10). In summary, the risk of lympho-hematopoietic malignancies and lymphoma was not associated to LDIR in pediatric patients with CHD who undergo CC. Further epidemiological studies with greater statistical power are needed to improve the assessment of the dose-risk relationship.


Assuntos
Cardiopatias Congênitas , Neoplasias Hematológicas , Neoplasias Induzidas por Radiação , Humanos , Criança , Fatores de Risco , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Radiação Ionizante , Neoplasias Hematológicas/epidemiologia , Neoplasias Hematológicas/complicações , Cateterismo Cardíaco/efeitos adversos , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...